
SN TRANSPORT ON
ACCELERATORS

DOE CoE Portability Workshop 4/19/16

Steven Rennich, NVIDIA

 David Appelhans, IBM

 Leopold Grinberg, IBM

 Adam Kunen, LLNL

 others …

2

SN TRANSPORT

Important class of DoE codes

Kripke/Ardra

UMT/Teton/Kull

Sweep algorithm – dominates performance at scale

GPU optimization of Diamond-Difference Sweep on Uniform Mesh

“Flux-register” or “Tiled-Hyperplane”

3

SN TRANSPORT

RHS

GEMM sweep

Kripke’s version, in discrete form

focus easy – use batched
algorithms

4

DIAMOND DIFFERENCE SWEEP

ψxin
ψxout

ψyout

ψyin

ψ=
f(rhs)

x

y

ψ = flux

5

DIAMOND DIFFERENCE SWEEP

ψ=
f(rhs)

x

y

ψ = flux

6

SWEEP

KBA

Hyperplane

single-thread (per direction-group)
cannot fill the GPU

no synchronization required
bandwidth bound

multiple threads (per direction-group)
can fill the GPU

synchronization at every step
expensive across SMs (kernel launch)

bandwidth bound
all fluxes need to be read/written from GMEM
every step.
(8 numbers – RHS, Psi, 3 input/output fluxes)

7

GPU FLUX-REGISTER SWEEP

flux-register
(hyperplane)

flux-register
(KBA)

“Keep the fluxes in registers”
x-fluxes in registers
y-, z-fluxes in shared memory (SMEM)
reduce GMEM bandwidth
reduces bandwidth by ~4x (8->2, just RHS, Psi)
limited to within an SM (i.e. SMEM)

Synchronize only within the SM
__syncthreads()
very fast
limited to within an SM (threadblock)

1 SM/block sweeps entire local domain (xd-g)

‘Column’ boundary data written to GMEM

GMEM flux input/output boundaries

‘column’
thread-

block/SM

different
columns
same SM

8

GPU FLUX-REGISTER SWEEP
(Visualization: David Appelhans IBM)

16x16x16 zones local
domain

8x8 y-z ‘column base’

4 - columns

9

GPU FLUX-REGISTER SWEEP

8x8 y-z column base x 16 directions

Limited by registers

53 registers per thread (also cache geometry/etc. in registers)

16 kB of SMEM (of 48kB)

50% occupancy

16x16 y-z column base version (4 directions)

¼ of data swept, ~½ sweep latency, ~½ throughput

Options

Sweep 15 groups simultaneously (on K40)

15 SMs, each sweeping 16 directions and 1 group -> 16 blocks/groups per kernel

Limiting kernels to 15 blocks permits synchronization with MPI transfer of fluxes

10

GPU FLUX-REGISTER PERFORMANCE
Typical configuration:

32 x 32 x 32 local zones, 16 directions per octant, 120 groups (~6GB on GPU)

Relative Performance: Single node, full-app (incl. batched DGEMM)

GPU flux-register performance = 7.2x vs. CPU (1x K40)

GPU flux-register performance = 11x vs. CPU (2x K40)

Absolute Performance: Single node

Sweep latency = 1.8 ms [or 800 usec]

58% SOL (theo. eff.) for GMEM bandwidth (110 GB/s vs. 190 GB/s peak achieved)

Opportunity to be 72% faster (Optimizations Remain!)

11

PORTABILITY

Algorithmic portability

“In fact, the KBA sweep is just the flux register sweep with a subdomain size of
1x1 and the hyperplane sweep is the flux register sweep with a subdomain size of
jmax x kmax. But how the algorithm maps this to threads is fundamental to the
performance difference between these identical mathematical formulations, and
thus is paramount to the portability.”

Portable performant code needs to start with a portable performant algorithm

12

PORTABILITY

Mapping algorithm to architecture

GPU implementation

Blocks operations to promote coalesced memory access (4 or 16 directions/groups) (memory
architecture)

Use registers for x-flux (memory architecture)

Maximizes cooperative threadblock size

Maximize occupancy (processor architecture)

Use Shared Memory for y- and z-flux (memory architecture)

Synchronize h-planes within threadblock (processor architecture)

Size subdomains to fill SMs (processor architecture)

13

TILED HYPERPLANE SWEEP OPENMP4

LLVM OpenMP4 compiler is young – excessive register allocation problem
limits number of threads (for no spilling).

162 registers/thread for no spilling.

256 threads per block, 4 kb of shared memory per block.

3 blocks per SM on K80 (register limited)

Theoretical max occupancy: 37.5%.

8x8 subdomain of zones, 4 directions per zone.

David Appelhans, IBM, GPU Technology Conference 2016, S6513 – “GPU Optimization of the Kripke Neutral-Particle Transport Mini-App”

14

SWEEP COMPARISON

David Appelhans, IBM, GPU Technology Conference 2016, S6513 – “GPU Optimization of the Kripke Neutral-Particle Transport Mini-App”

Table: Table of sweep times for 32x32x32 zone domain, 96-128 directions per octant, 104-156
groups. Multiple timings represent different group/direction set choices. CPU was dual socket,
20 core POWER 8, all GPU results were for a single K80 (half a physical card).

(normalized)

15

0.001	

0.01	

0.1	

1	

0.1	 1	 10	

sw
ee
p	
la
te
nc
y	

sweep	,me	(1/throughput)	

OMP1	regular	(CPU)	

OMP4	hplane	(CPU)	

OMP4	hplane	(CPU)	

OMP4	hplane	(GPU)	

OMP4	hplane	(GPU)	

CUDA	hplane	(GPU)	

CUDA	hplane	(GPU)	

OMP4	9led	hplane	(GPU)	

CUDA	9led	hplane	16x16x4	

CUDA	9led	hplane	8x8x16	

SWEEP TIMINGS

better

worse

16

PORTABLE, PERFORMANT ALGORITHMS

GPU flux-register sweep kernel
(CUDA or OpenMP)

CPU hyperplane sweep
kernel (OpenMP)

Generic Caching Sweep alg.
(OpenMP)

have this have this

? this comes from the
other two ?

specializable/tunable

17

PORTABLE, PERFORMANT ALGORITHMS

GPU flux-register
sweep kernel

(CUDA or OpenMP)

Generic Caching Sweep alg.

have this have this

? 4 children means this
is different ?

CPU hyperplane
sweep kernel

(OpenMP)
Xeon Phi kernel other?

specializable/tunable

18

SUMMARIZING

Optimized sweep kernel written in CUDA

Leverages many architectural features of the GPU

OpenMP4 port

Performs well on CPU & GPU

Less performance than CUDA version on GPU

Expect better performance when compilers use fewer registers

Performance portability requires

Performance portable algorithm

Portable language exposing architectural features

